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Abstract: The singlet-oxygen ene reaction and the epoxidation by DMD of chiral oxazolidine-substituted alkenes,
equipped with a free urea NH functionality and a conformationally fixed double bond, proceed itikeigh
diastereoselectivity (up te 95:5); also a high regioselectivity was found for #i@ ene reaction. Capping of

the free NH functionality by methylation erases thiie selectivity for both oxidants and significantly reduces

the regioselectivity in the ene reaction. These data demonstrate effective hydrogen bonding between the remote
urea NH functionality and the oxidant that favors tike attack on the €C double bond. FotO,, the hydrogen

bonding in the exciplex results in preferred hydrogen abstraction from the alkyl group cis to the directing urea
functionality.

Introduction amind groups has recently received much attention, and high
stereocontrol was achieved through the advent of beneficial
hydrogen bonding between the conformationally aligned allylic

’ functionality and the singlet-oxygen enophile. However, as

indicated by the low diastereoselectivities obtained in the

The ene reaction of singlet oxygedQg) with alkenes
constitutes a convenient route to allylic hydroperoxides and
after reduction, allylic alcohols; the latter are versatile building

blocks with synthetic utility: Much effort has been expended

to achieve control of the regio- as well as the diastereoselectivity

for such oxyfunctionalizations.

The regioselectivity of theO, ene reaction, that is, the site
of hydrogen abstraction, is governed by several empirical
facts: The so-calledis effect predicts that hydrogen abstraction
occurs predominantly from the higher substituted side of the
double bond. In contrast, thgem effedt and large-group
nonbonding effegentail predominant abstraction at tigeminal
position, promoted by electron-withdrawing and bulky substit-
uents.

In regard to the diastereoselectivity, singlet oxygen as a linear
two-atomic molecule cannot itself transmit steric effects, so that
diastereoselection may only arise through substrate control. In

this context, the directing propensity of allylic hydréxgnd
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photooxygenations of chiral homoallylic alcoh8li s essential
that the directing hydrogen-bonding functionality is positioned
in the proximate neighborhood of the double bond and fixed
on onex face of the C-C double bond by conformational
constraint.

Similar directing effects were also found to operate in the
epoxidations of olefins by dimethyldioxirane (DMD)and
m-chloroperbenzoic acidifCPBA)1° Thus, allylic hydrogen-

bonding donors such as the hydroxy and amino groups, which

are favorably aligned by allylic strain, may steer the incoming
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Table 1: Diastereo- and Regioselectivity in the PhotooxygenatafnOxazolidine-Substituted Olefink (cf. Scheme 2)

regioselectivity

diastereoselectivitiés

entry R R R R Ar  solvent 2 2 20 3 k2 ul-2 k-2 ul2 k-2 ul-2"
1 1a Me Me H H Ph CDCY oF - 7 94:6 -
2 la Me Me H H Ph CDCOCR 96° - 4 85:15 -
3 1b Me Me H H pNOSf CDCh > 05 - <5 >95:5 -
4 1c Me Me H Me Ph cDC 70° - 30 41:59 -
5 1d Et H H H Ph  CDCh >95 ~ - <5 >95 : 5 -
6 1le H Me Me H Ph CDC} - 31 69 <5 - 53 @ 47 52 : 48
7 E1f Me Et H H Ph CDC} 92 8 — <5 >95 : 5 h -
8 zi1f Et Me H H Ph CDC} 12 76 — 12 h >95 : 5 -

a Sensitizer was 5,10,15,20-tetrakis(pentafluorophenyl)porphine (TPFPP), the reactions were condudi@dGit unless otherwise stated,
conversion and mass balance wer@0%."° Determined by*H NMR spectroscopy, errai-5% of the stated value$Differentiation between the
products2 and2' is not possible when R= R?=Me, because these products are identit®lass balance was only 74%jp-Nitrophenyl.f Conversion
was 47%9 The newly formed double bond B-configured." Not determined due to small amounit3he E/Z ratio of the newly formed double

bond was 86:14.

oxidant through hydrogen bonding. Nevertheless, only a few
examples of the remote directing group are known for selective
epoxidations. The observed diastereoselectivity for homoallylic
alcohols is significantly lower than for allylic substituents due
to the less efficient alignment of the directing hydrogen-bonding
entity 7c.8a,10n,11

Recently, we reported that alkenyl-substituted oxazolidines,
similar to those that have been used as chiral auxilidfiés,
undergo highly diastereoselective singlet-oxygen ene reattion
as well as epoxidations byCPBA and DMD?® The controlling
feature derives from a remotely positioned urea NH functional-
ity, which provides beneficial hydrogen bonding with the
oxidant. In the present contribution, we supply the full synthetic
and mechanistic details on this new remotely directed diaste-
reocontrol and demonstrate that the regioselectivity of:@e
ene reaction is also governed by the hydrogen-bonding directing
group of the oxazolidine.

Results

The oxazolidine-substituted alkenks b, e, f were synthe-
sized by the condensation of the corresponding aldehyde with
S-phenylglycinol in analogy to the reported procedifg&fol-
lowed by reaction with the appropriate aryl isocyanate (Scheme
1).16 The cis-disubstituted olefinld was obtained by partial
catalytic hydrogenation of the alkyrdg, which was synthesized
from 2-pentynalS-phenylglycinol, and phenylisocyanate (Scheme
1). Methylation of the urea functionality in the oxazolidihe
yielded the N-methylated derivativelc. The like relative
configuration of the stereogenic centers of the oxazolidine ring
was assessed for all cases by NOE measurements.
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The oxazolidined were photooxygenated at low temperature,
and the resulting hydroperoxidésvere reduced in situ, usually
after complete conversion of the starting material. The reaction
sequence afforded the corresponding regioisomeric allylic
alcohols2, 2', and2" and, in some cases, tipiro-dioxolanes
3 (Scheme 2). The product distribution and the diastereomeric
ratios of the allylic alcohols were determined from the crude
reaction mixture by'H NMR spectroscopy and are given in
Table 1. In the case of the substrafes b, d and E-and Z-1f,
the allylic alcohols2 were formed in higHike diastereoselec-
tivity and good yields in the nonpolar chloroform (entries 1, 3,
5, 7, 8). The diastereoselectivity depends strongly on the reaction
medium, as demonstrated by the significantly lower selectivity
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Table 2: Diastereoselectivities in the DMD Epoxidation of
Oxazolidine-Substituted Olefink (cf. Scheme 4)

diastereoselectivity

entry R R R R Ar k-4 ul-4
1 la Me Me H H Ph >95 5
2 1b Me Me H H p-NOs >95 : b5
3 1c Me Me H Me Ph 26 : 74
4 1d Et H H H Ph >95 : 5
5 le H Me Me H Ph 74 . 26
6 E-1f Me Et H H Ph >95 5
7 Z-1f Et Me H H Ph >95 5

aConversion and mass balance wer80%. Determined by'H
NMR spectroscopy, errat=5% of the stated value&p-Nitrophenyl.

of the photooxygenation of the olefita in the polar acetone.

Furthermore, the diastereoselectivity is dramatically reduced for

the olefin 1e that bears no abstractable allylic hydrogen atom
positioned cis to the oxazolidine moiety (entry 6). A slightike
preference was found for tHé-methylated olefinlc.

Adam et al.
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of the N-methylated derivativelc afforded mainly theunlike
epoxideul-4c.

Also the epoxidation of the olefinga—c, e by m-chloro-
perbenzoic acidniCPBA) shows the same trend in diastereo-
selectivity as DMD. Thudjke selectivity forla, b, eandunlike
for 1c are observed, but these diastereoselectivities are lower

Besides the high diastereoselectivity in the photooxygenation than the ones found for the corresponding DMD epoxidations.

of olefins 1, the site of hydrogen abstraction (regioselectivity)
is also usually well defined. In the ene reaction of olefirs

b, d, eandE- andZ-1f, hydrogen abstraction occurs predomi-
nantly from one of the methyl groups and only a small amount
from the aminal position. The hydroperoxides derived from the
latter H abstraction mode cyclize in situ to the dioxolaBes
(Scheme 3). Here, tHé-methylated derivativéc exhibits again

a lower selectivity; as much as 30% of the dioxolaBesvas
found in the reaction mixture (entry 4). For the isomeric olefins
E- andZ-1f, the ene reactivity of the two geminal alkyl groups
of the double bondtix versustwin reactivity*’) differs; the
abstraction occurs in both cases predominantly atvifrealkyl
group, that is, the one located cis to tlene oxazolidine
substituent (entries 7 and 8).

The olefins 1 were epoxidized with dimethyldioxirane
(DMD) to yield the corresponding epoxidégScheme 4). The

These resuli§ are given in the Supporting Information section.

Configurational Assignments

To assess the relative configuration of the allylic alcohol
Ik-2a, single crystals were grown and submitted to X-ray
analysis (cf. Figure 1 in the Supporting InformatidaY.helike
configuration of the corresponding epoxidletawas established
by base-catalyzed rearrangementike2a (Scheme 5%? Fur-
thermore, epoxidék-4a was methylated to yield the epoxide
Ik-4c (Scheme 5), and thus, also its relatlikee configuration
was established. The epoxioéd, e, andE-4f were synthesized
independently as epimeric mixtures from the corresponding
racemic epoxy aldehydées and their absolute configuration
was assigned by independent synthesis ofuthike isomers
from the optically active epoxy aldehydeRj25d—f (Scheme
6). The like configuration of the allylic alcoholk-2d was

diastereomeric ratios of the epoxides were determined by determined by base-catalyzed rearrangement of epdixide

IH NMR spectroscopy from the crude product mixture and are
given in Table 2. The epoxidations of the olefiba b, d, and

E- and Z-1f proceeded highhlike diastereoselectively; not
even traces of thanlike diastereomer could be detected in the
spectra (entries 1, 2, 4, 6, 7). The reaction of¢reedimethyl-
substituted olefirleis less selective, but still a significalite

(Scheme 7).

Discussion

The present results provide compelling evidence for an
attractive hydrogen-bonded interaction between the attacking
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singlet-oxygen enophile and the NH group of the urea func-
tionality in the photooxygenation of the oxazolidinks b, d,

f (entries 1, 3, 5, 7, and 8 in Table 1). Hydrogen bonding is
only feasible in the transition state for tliee exciplex, whereas
such interaction is prevented for thalike attack (Scheme 8).
The hydrogen bonding between the urea-NH moiety and the
negatively polarized, terminal oxygen atom of singlet oxygen
lowers the energy of the correspondiiig transition state, and
therefore, the attack on thisface of the double bond is favored.

That hydrogen bonding plays an important role in the

transition state of thelike exciplex is confirmed by the
dependence of the diastereoselectivity on the reaction medium
which is exemplified for oxazolidinga. In acetone, a hydrogen-
bonding acceptor itself, the hydrogen bonding between the

J. Am. Chem. Soc., Vol. 123, No. 30, 202B1

Scheme 10
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olefins 1a, b, d—f by suchlone abstraction (entries-13 and
5—7 in Table 1). The unfavorablene abstraction is due to
fixation of the oxazolidine moiety by the hydrogen bonding in
the energy-favoredike exciplex, in which the €H bond of

the aminal fone) hydrogen atom is in the nodal plane of the
C—C double bond (cf. Scheme 8). Since a perpendicular
arrangement of this €H bond is necessary for hydrogen
abstractior?? the aminal hydrogen atom at thene site is not
available for abstraction.

For the methylated derivativdc (entry 4 in Table 1),
hydrogen bonding is prevented, and the oxazolidine moiety
rotates quite freely; consequently, the dioxol&utes formed
to a significant extent (30%). It is important to emphasize that
the observed regioselectivity does not arise from the so-called
cis effect which predicts that hydrogen abstraction takes place
from the higher substituted side of the double bértithis
were the case, a similar regioselectivity would be expected for
the olefin 1a with a nonmethylated urea functionality and its
methylated derivativéc, which is not the case (entries 1 and 4
in Table 1).

Since the singlet-oxygen ene reaction involves a perepoxide-
like geometry (Schemes 8 and 9), it was of mechanistic interest
to compare the photooxygenation results of the oxazolidines
with those of the DMD epoxidations. Indeed, both oxyfunc-
tionalizations display strikingly similar trends, in that the high
diastereoselectivity observed in the singlet-oxygen reaction of
substrated a, b, d, f is found also for the DMD epoxidations
(entries 1, 2, 4, 6, and 7 in Table 2). Here again, hydrogen
bonding between the urea NH functionality and the DMD
‘oxidant operates in thike transition state (Scheme 10). This
favorable bonding reduces the energy of the transition state,

oxazolidine substrate and the singlet-oxygen enophile is lessWhich leads to tht_e high>95:5) diastereos_electivities given in
effective, and consequently, the diastereoselectivity of the ene 1able 2. Methylation of the NH group as in olefl (entry 3)

reaction in this solvent is significantly lower than in the nonpolar
chloroform (entry 1 and 2 in Table 1). Furthermore, methylation
of the NH functionality as in oxazolidingc prevents hydrogen
bonding, and hence, a poor diastereoselectivity is found; in fact,
the oppositenlike) diastereomer is slightly favored (entry 4).
The urea hydrogen bonding not only controls the diastereo-
selectivity of the singlet-oxygen attack but also promotes a high

prevents such hydrogen bonding, and instead, the urea group
imposes a steric constraint such that a moderate (26miKe
selectivity is observed.

The reason for the relatively low selectivity observed in the
case of thecis-dimethyl-substituted olefide (entry 5) may be
explained in terms of less effective fixation of the double bond.
Calculations (B3LYP/6-31G*) reveal two possible ground-state

regioselectivity as demonstrated in the hydrogen abstraction of conformers for the model compounda and7e (Scheme 11),

the diastereomeric olefins- andZ-1f. As exemplified for the

E-1f diastereomer (Scheme 9), due to the hydrogen bonding,

along thislike trajectory the terminal oxygen atom 9, points
toward the urea functionality. Clearly, hydrogen abstraction from
the twin ethyl group is prohibited, and instead, removal from
the twix andlone positions is expected. Thus, the geometrical
fixation in thelike exciplex due to hydrogen bonding promotes
abstraction predominantly from the allylic substituent located
cisto the oxazolidinet{vix position); thus, théwix-methyl group

in substrateE-1f and thetwix-ethyl group for the olefinz-1f

are ene-active (Scheme 9).

Furthermore, the hydrogen bonding in the exciplex hinders
effectively the possible abstraction of the amirahg) hydrogen
atom, as witnessed by the minor amounts of the dioxol&nes
(cf. Scheme 3), which are formed in the ene reaction of the

of which conformerA forms a hydrogen bond to the dioxirane
but conformeB does not. In the case of the oleiia, conformer

A is nearly exclusively populated (structufeis favored by
3.2 kcal/mol), and expectedly, only tHie epoxide should
result. In contrast, for the substrateboth conformers are nearly
equally populated (structurB is favored by 0.36 kcal/mol),
and both may react with the oxidant equally likely. Applied to
the experimental results (entries 1 and 5 in Table 2), the lower
selectivity in the epoxidation of oxazolidirieecompared td.a
arises from the superposition of thi&e-selective attack on
conformerA and a completely unselective attack on conformer
B (Scheme 11). Despite this less effective fixation of the double

(20) (a) Herz, W.; Juo, Rl1. Org. Chem1985 50, 618-627. (b) Poon,
T. H. W,; Pringle, K.; Foote, C. SI. Am. Chem. Sod.995 117, 7611~
7618.
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Unexpected is the fact that the diastereoselectivities for the
mCPBA epoxidation® (cf. the Supporting Information) show
the same trend as DMD (Table 2), but are generally lower.
Usually mCPBA is more diastereoselective than DMD, for
example, in the epoxidations of chiral allylic alcoh&sThis
has been explained in terms of less efficient hydrogen bonding
in the DMD case, especially because the reaction medium is
more polar for this reagent (acetone versus chloroform). In the
peracid epoxidation of the oxazolidinds hydrogen bonding
also favors thdike transition state (Scheme 10), but for the
peracid the distance between the hydrogen-bond acceptor (the
carbonyl oxygen atord) and the transferred oxygen atom (2.4
A)22is significantly larger than for the dioxirane (1.52)nd
for the singlet oxygen (1.2 A¥ Since the distance between
the C-C double bond and the hydrogen atom of the NH group
is only 2.6 A (calculated for the model compourith),
presumably the peracid does not fit as well into the cavity
formed by the alkenyl group and the urea functionality.
Therefore, the hydrogen bonding is less effectiveri@PBA
than for DMD or'O,, and consequently, a lower diastereose-
lectivity is found for the peracid oxidant.

In summary, the present results clearly demonstrate that the
remotely located urea-NH functionality of chiral carbamoyl-
substituted oxazolidines is highly effective in controlling the
diastereoselectivity, as well as the regioselectivity, of the singlet-
oxygen ene reaction. The controlling feature is the efficient
hydrogen bonding between the urea functionality and the
oxidant, which besides singlet oxygen also operates well in the
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epoxidation by dimethyldioxirane amd-chloroperbenzoic acid.
The control of diastereoselectivity through hydrogen bonding
is well established in the oxyfunctionalization by these oxi-
dants®7.21%however, such high directivity has hitherto not been
observed by a hydrogen-bonding functionality that far away
from the C-C double bond of the substrate. Furthermore, it
should be emphasized that the present oxazolidine chiral
bond in oxazolidinele, the moderate (74:26ike diastereose-  auxiliary exerts better diastereoselectivity control for DMD
lectivity in its epoxidation clearly shows that hydrogen bonding thanmCPBA epoxidation reactions, an unprecedented fact. Since
also operates for this substrate. the oxazolidine ring system is usually readily cleaved by
This is mechanistically significant in view of the completely hydrolysis!?"9.25 the present methodology offers promising
unselective ene reaction of the substigevith singlet oxygen prospects in the preparation of optically active building blocks
(entry 6 in Table 1). Thus, the two possible regioisomeric allylic for asymmetric synthesis.
alcohols2€ and2¢e’ were formed each as ca. 1:1 diastereomeric
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